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Rationale and Objectives. Several methods have been proposed for cal-
culating the variances and covariances of nonparametric estimates of the
area under receiver operating characteristic curves (AUC). The authors pro-
vide an explanation of the relationships between them and illustrate the
factors that determine sampling variability.

Methods. The authors investigated the algebraic links between two meth-
ods, that of “placements” and that of “pseudovalues” based on jackknifing.
They also performed 2 numerical investigation of the comparative perfor-
mance of the two methods.

Results. The “placement” method has a simple structure that illustrates
the determinants of the sampling variability and does not require special-
ized software. The authors show that the pseudovalues used in the jack-
knife method are directly linked to the placement values.

Conclusion. Because of the close link, borne out in a numeric investiga-
tion of the sampling variation, and because of the ease of computation, the
choice between the two methods can be based on users’ preferences. For
indexes other than the AUC, however, the use of pseudovalues holds
greater promise.

Key Words. Nonparametric ROC analysis; area under the curve, DeLong
method; jackknife pseudovalues

he area under the receiver operating characteristic (ROC) curve

(AUC) is commonly used as a measure of the accuracy of a diagnostic
test. It can be estimated parametrically or nonparametrically [1-6]. Al-
though this statistic has a helpful interpretation, the assessment of its sam-
pling variability—especially in the nonparametric case—is less intuitive. At
least four formulas or approaches have been proposed for calculating the
variance of a nonparametric AUC estimate, two of which are extendable to
the covariance between estimates from two curves.

The first of these four approaches was initially suggested by Bamber (7],

who noted the connection between the AUC and the parameter estimated
with the Wilcoxon statistic. Hanley and McNeil [6] used this link to give a
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practical method for calculating the variance of the
AUC. They relied on the traditional form of the nonnull
variance for the Wilcoxon statistic, which involves
three components, and showed how to estimate each
component from the raw ROC data. A second, much
simpler, variance formula that involves a closed form
function of just the AUC estimate itself was also offered
by Hanley and McNeil [6). However, because it was de-
rived from the assumption of two underlying negative
exponential distributions, with just one free parameter,
it can underestimate the variance when the AUC is
close to 0.50 and overestimate it when the AUC is close
to 1. Hanley and McNeil [8] also offered a method for
calculating the covariance of two AUC estimates de-
rived from the same sample of cases. The third method
was given by DeLong et al [9]. Although developed pri-
marily as a way to estimate the covariance between two
or more AUC estimates, it can also be used to calculate
the variance of a single estimate. It is similar to the
method described by Wieand et al [10]. Although it
provides the cleanest and most elegant approach to
variances and covariances of AUCs, it has unfortunately
not become widely used in radiology. This may have to
do with the type of journal in which it was published
or with the perceived complexity of the computations.
The fourth method is that of jackknifing [11], first de-
scribed by McNeil and Hanley [12] in the case of a dif-
ferent accuracy index but also applicable to the AUC in-
dex or two correlated AUC estimates. Most recently, it
has been extended by Dorfman et al [13] to ROC data
involving multiple readers.

From the description of each of the four methods, it
is not easy to understand the relationships between
them or to develop an intuition for the factors that de-
termine the sampling variability. We believe that the
method described by DeLong et al [9] should be the
most intuitive and provide the greatest insights into the
determinants of the sampling variability of the AUC.
Conversely, the method of jackknifing is both simple
and mysterious. The purpose of this article is to popu-
larize both methods. We begin by explaining the
method described by DeLong et al in enough detail for
users to see its simplicity and its insights. Second, we
try to demystify the concepts of jackknifing and pseu-
dovalues. We then go on to show the link, only vaguely
hinted at by DeLong et al, between the quantities used
in their method and the pseudovalues used in the jack-
knifing method. In both approaches, the elemental
quantities can be thought of as case-specific measures
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TABLE 1: Disease Status and Ratings Based on images
Produced with Two Ditferent Field Strengths

Patient Disease Rating
No. Present Field Strength 1 Fieid Strength 2
1 Yes 1 1
2 No 2 1
3 Yes 5 5
4 No 1 1
5 No 1 1
6 Yes 1 1
7 Yes 2 4
8 No 1 1
9 No 2 2
10 Yes 2 2
1" No 1 1
12 No 1 1
13 Yes 5 5
14 No 1 1
15 No 1 1

*Rating scale ranged from 1(definitely negative) to 5 (definitely
positive).

of “case difficulty.” Finally, for those who are more con-
vinced by data than by algebra, we provide a numeric
investigation of the comparative performance of the
two approaches.

DATA USED FOR ILLUSTRATION

The data set we use for illustration comes from a
small side study conducted in conjunction with a larger
one to assess readers’ diagnostic accuracy with images
generated from two magnetic resonance (MR) imaging
units with two different field strengths. A total of 15 pa-
tients suspected of temporal lobe epilepsy (six with dis-
ease and nine without) were assembled. After giving
informed consent, each patient was imaged with two
different field strengths. Both examinations were sched-
uled for the same day or on two consecutive days; the
order was randomly determined for each patient. The
interpretation involved several detection tasks. For
each task, the reader used a five-point rating scale
(“definitely normal,” “probably normal,” “uncertain,”
“probably abnormal,” and “definitely abnormal”) to de-
scribe his confidence about whether an abhorma]ity
was present. The true situation was established inde-
pendently. The data concerning one reader’s perfor-
mance on one such task for one hemisphere are shown
in Table 1. Although the numbers of diseased and non-
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TABLE 2: DeL.ong Method: Calculation of Placements (and of the AUC and Its
variance) from Rating Data for Six Diseased and Nine Nondlseased Subjects

Ratings for n= 9

Ratings for m = 6 Diseased Subjects*

Nondiseased Ptacement
Subjects* Y,=1 Y,=5 Y,=1 Y,=2 Y=2 Y,=5 v,
X=2 0.0 1 0.0 0.5 0.5 1 0.50
X,=1 0.5 1 0.5 1 1 1 0.83
X,=1 0.5 1 0.5 1 1 1 0.83
X =1 0.5 1 0.5 1 1 1 0.83
X,=2 0.0 1 0.0 05 0.5 1 0.50
X,=1 0.5 1 0.5 1 1 1 0.83
X,=1 0.5 1 0.5 1 1 1 0.83
X,=1 0.5 1 05 1 1 1 0.83
X,=1 0.5 1 0.5 1 1 1 0.83
" Placement V, 0.39 1 039  0.89 0.89 1 e

Note.—Data indicate the placement of each Y with respect to each X, with 1 indicating
the “correct” ordering, 0 an “incorrect” ordering, and 0.5 if Yand X are equal. The data in
the right column and bottom row of the Table, obtained as the averages of the correspond-
ing rows/columns, are the placements or pseudoaccuracies corresponding to each X and
each Y. Calculations in this and later tables were performed with spreadsheet precision,
but numbers were rounded for presentation. Data were obtained with the first of the two
field strengths in Table 1. AUC = average of V,’s = average of V,'s = 0.76. Var(V,) =
0.0216; Var(V,) = 0.0848. Var(AUC) = 0.0216/9 + 0.0848/6 = 0.0165. SE(AUC) =

¥0.0165 = 0.13.

*Rating scale ranged from 1 (definitely negative) to 5 (definitely positive).

diseased subjects are small, and although the distribu-
tion of ratings is somewhat “lumpy,” the advantage of
this small data set is that we can show &/l calculations.

THE DELONG APPROACH

We begin with a single diagnostic test (eg, images
obtained at one particular field strength). Let X, D, GHI
X_denote the rating or test results for a sample of n
nondiseased subjectsand Y, Y,..., Y, denote the test
results for m diseased subjects. Suppose, as in Table 1,
that the scale is such that larger test values constitute
greater evidence of disease.

The approach is based on transforming each rating
into a “placement” value. For a rating Y for a subject in
the diseased group, its “placement,” which DeLong et
al called V, is the fraction or percentage of X’s that it
exceeds (ie, one converts the Y into the percentile it
would occupy in the X sample). Thus, if the test is in-
formative the V,’s will tend to be at the higher end of
the 0-1 (or 0-100) scale.

Conversely, for the placement V, of an X value for a
subject in the nondiseased group, one calculates
where—in the reverse percentile scale—it would lie in
the Y distribution. Thus, if the X’s tend to be less “posi-

tive” than the ¥'s, the V,'s will again tend to be at the
upper end of the (0,1) scale.

One way to visualize these concepts and to see their
connection with previous methods is to form an n X m
matrix consisting of the placements of each Y with re-
spect to each X. As is displayed in Table 2, matrix en-
tries are scored as 1 if Y is greater than X, 0.5 if the
two are equal, and 0 if Y is less than X. Then, the
placement of a particular ¥ can be calculated by aver-
aging the entries corresponding to that Y. For example,
for Y,, one averages the nine entries in column 4 to
transform the original rating Y for a patient with dis-
ease into a placement V, = 0.89. Similarly, the place-
ment (or V) for any X for a patient without disease is
obtained by averaging the row of entries for that X. In
fact, if calculations are done on a spreadsheet, one can
calculate the placements directly without having to
form the n x m matrix. To do so in Excel (Microsoft,
Redmond, WA), for example, one can name the two
ranges containing the X and Y values. If one calls them
XRANGE and YRANGE, then the V's corresponding to
the individual X values can be calculated with the fol-
lowing function: AVERAGE (IF X < YRANGE, 1, IF X >
YRANGE, 0, 0.5), provided one indicates that the argu-
ment of the AVERAGE function is an array. The Vs cor-
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responding to the individual Y values are calculated in
the same way.

The set of V,’s and Vs can be used in place of the
original X and Y ratings to construct the empirical ROC
curve. The average ¥, = 0.76 of the n = 9 V,’s and the
average V, = 0.76 of the m = 6 V,’s are both equivalent
to the nonparametric AUC. Thus, each vy and each v,
is an estimate (albeit a noisy one) of the AUC. Whereas
DeLong et al call the V’s the components of the “U” sta-
tistic, we prefer to call them “placements” or “patient-
specific accuracies” because they are in the same (0,1)
scale as the AUC itself and because one can think of a
V =1 as one of the easiest cases and a V = 0 as one of
the most difficult.

Up to now, the reader may ask why one would
bother to calculate these six individual V's and nine
V,’s, since one can simply calculate the AUC directly
from the average of the 6 X 9 = 54 comparisons of each
Y with each X. The answer is that the variations of
these six and nine V’s can be used directly to estimate
the variance of the AUC estimate.

Variance of the AUC Estimate

In the method used by DeLong et al [9], the variance
of the AUC estimate is calculated as the sum of two
contributions, one relating to the number and variabil-
ity of the V_’s, the other to the number and variability
of the Vs, as follows:

.

Variance of V,'s = Variance of V,'s
n:number of V,'s  m:number of V,'s’

Var[AUC] = @

Those interested in the equivalence of this equation
and the formula given in Hanley and McNeil’s first ar-
ticle [6] can consult the textbook by Hettmansperger
[14]. DeLong et al [9] omitted the third variance com-
ponent, AUC(1 — AUC)/mn, since it is negligible when
n and m are large.

The attraction of Equation (1) is that each of the two
contributions has the following form: variance of obser-
vations divided by number of observations, which is
the well-known formula for the variance of a mean. We

take the square root of this variance to obtain the stan-
dard error of 2 mean (SEM). However, there is one im-
portant difference in this particular instance. ¥, and ¥,
are both equivalent to the AUC statistic; however,
when calculating the variance of AUC one cannot rely
on the V's alone and treat the V,’s as a set of constants
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or vice versa. The variability in the V’s and V,'s must
both be used. One can see the degree to which the
variability of the AUC estimate is influenced by both
sets of V's if one considers an extreme example: If m =
50 or even 500 but n = 1, then the estimate of the AUC
depends entirely on the single n = 1 observation from
the nondiseased population.

The bottom rows of Table 2 show the calculation of
the variance of an AUC from the two component accu-
racies. The estimated variances of the pseudoaccuracies
corresponding to the X’s and Y’s are 0.0216 and
0.0848. Thus, the estimated variance of the estimated
accuracy index, that is, of AUC = 0.76, is as follows:

0.0216 0.0848

Var[AUC] = + =0.0165,

so that the standard error (SE) is —

SE{AUC] = v0.0165 =013

The structure of Equation (1) reveals one additional
insight into the sampling variability (and its control)
that does not appear to have been commented on pre-
viously. This insight comes from the nature of the com-
ponent variances (0.0216 and 0.0848 in our example).
These are estimates of the variance of the true-positive
fraction (TPF) and false-positive fraction (FPF) points
on the smooth ROC curve underlying the data. One can
imagine the smooth ROC curve as a very large number
(say 1,000 or 10,000) of TPF points corresponding to
100 or 10,000 equally spaced FPF points. If the ROC
curve were the 45° diagonal line, these TPF points
would be uniform on the (0,1) scale, and their variance
would be 1/12 or 0.0833. The closer the curve is to the
top left corner, the more concentrated and closer to
the 1 than the 0 end of the (0,1) scale the TPF points

) will be and the smaller will be their variance. The V,’s

in the method used by DeLong et al are considered to
be a random sample of these TPF points.

Likewise, one can think of the ROC curve as a large
sequence of FPF points, measured at equal TPF spac-
ings, and one can think of the variance of the V,’s as an
estimate of the variance of this sequence. In practice,
however, because actual sample sizes are finite and the
data are recorded on a discrete rather than a continu-
ous scale, the observed variance of the V,’s and Vs
can be larger than it would be if one could observe

| Halalta)
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TABLE 3: DelLong Method: Caiculation of Varlances and
Covariances of Two AUCs from the Variances and
Covarlances of the Individual Placement Values

. Placement
Patient Group S

and No. Field Strength 1 Field Strength 2

Patients with disease

1 0.39 0.44
3 1.00 1.00
6 0.39 0.44
7 0.89 1.00
10 0.89 0.94
13 1.00 1.00
Average . 0.76 0.81
Variance o 0.0848 0.0787
Covariance* 0.0809
Patients without disease
2 0.50 0.83
4 0.83 0.83
5 0.83 0.83
8 0.83 0.83
9 0.50 0.58
11 0.83 0.83
12 0.83 0.83
14 0.83 0.83
15 0.83 0.83
Average 0.76 0.81
Variance 0.0216 0.0069
Covariance* 0.0081

Note.—Var(AUC,) = 0.0848/6 + 0.0216/9 = 0.0165;

Var(AUC,) = 0.0787/6 + 0.0069/9 = 0.0139; Covar(AUC,, AUC,) =
0.0809/6 + 0.0081/9 = 0.0144.

*Covariances for individual data pairs were calculated as foi-
lows: correlation x SD, x SD,, where SD = standard deviation.
Some spreadsheets can calculate the covariance directly, but
they use a divisor of n, rather than n - 1. If this direct covariance
function is used, one should multiply the result by n/(n - 1).

them on a more refined (ie, truly continuous) scale.
However, the main point remains: One can project the
variance of the AUC from just the ROC curve itself and
the sample sizes, m and n, used to estimate it. To do
this, simply measure sufficient TPFs (corresponding to
equally spaced FPFs) and sufficient FPFs (correspond-
ing to equally spaced TPFs) to get a reasonably stable
estimate of their variances; then divide these variances
by m and n, respectively, and add the results to arrive
at an estimate of the variance of the AUC. (Note that
the variance for the FPFs is the same as that of their
complements, namely, specificities.)

With this representation of the variance of the AUC,
we can see that if the curve is symmetric, the two com-

NONPARAMETRIC ESTIMATES OF AREAS UNDER ROC CURVES

ponent variances will be equal. Thus, if one has a
choice of how to allocate m and #, the variance of the
AUC is minimized by taking m = n. If, however, the
curve is asymmetric and rises more rapidly from the ori-
gin and then flattens out more as it turns toward the
upper right corner, then the variance of the “sensitivi-
ties at equal specificities” will be smaller than the vari-
ance of the “specificities at equal specificities”; in this
case, the optimal allocation would be to have m and n
in the ratio of the two variances, so one uses the larger
denominator to counteract the larger variance.

Variance and Covariances for Comparison of Two
AUCs

Very often, the main purpose of a study is to com-
pare the area under one ROC curve AUC, = 0.76 in our
example) with that from a second curve derived from
the same sample of subjects (AUC, = 0.81). The SE used
to judge this difference in AUCs involves not just the
variances Var(AUC)) = 0.0165 and Var(AUC)) = 0.0139
(shown in Table 3, calculated in the same way as for
AUC), but also the covariance (Covar) of these two es-
timates. The SE of the 0.81 - 0.76 is calculated as the
square root of '

Var[AUC, - AUG,] = Var[AUC, ] + Var{AUC,]
- 2Covar[AUC,, AUG,]. (@

The main purpose of the method used by DeLong et al
is the calculation of the covariance term. Following on
the pattern already established for a variance, the cova-
riance can again be expressed as the sum of two contri-
butions, one involving the number and covariability of
the pairs of Vs, the other involving the number and
covariability of the pairs of Vs, as follows:

Covariance of pairs of V,'s

Covar[AUC,,AUG,]=
(AUG,AUG] n: number of pairs

Covariance of pairs of V.,'s
+ Y. (3

m: number of pairs

The calculation of the covariance of AUC, and AUC,
is shown in Table 3. This covariance is then inserted in
Equation (2) to obtain the SE of ¥(0.0165 +0.0139 —
2 - 0.0144) = 0.04 associated with the AUC difference
of 0.05. Because the sample size was very small, the
sampling variability of each AUC estimate is relatively
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large. Thus, despite the positive correlation between
the two, the confidence interval for their difference
(0.05 £ 1.96 x 0.04 or —0.03 to 0.13) is large.

THE JACKKNIFE APPROACH

At the heart of the jackknife technique is the con-
cept of a pseudovalue. One can think of a pseudovalue
as a replacement of a raw data value by an equivalent
value. The coliection of pseudovalues gives the same
summary statistic as the original values, and the varia-
tion of these pseudovalues allows one to calculate the
sampling variability of the summary statistic. The
pseudovalues are particularly valuable when the sum-
mary statistic has a complex form and the form of the
sampling variation is not readily apparent. For example,
it is not obvious what the form of the variance of the
AUC estimate should be, other than that it must some-
how involve m and n—or some function of them-—in
the denominator.

The pseudovalue corresponding to any one observa-
tion can be defined as the contribution of that observa-
tion to the summary statistic. This can be determined
by calculating the summary statistic with and without
the observation in question. For example, if the sum-
mary ROC index is the AUC, then the AUC pseudovalue
(pAUC) corresponding to observation 7 is

pAUC, = (m+m)AUC-(m+n-1DAUC_,,, 4

where AUC is the area calculated with all m + n obser-
vations and AUC( - the area calculated from the (m +

n - 1) observations, with observation ¢ omitted. (A ma-
jor advantage of jackknife pseudovalues over the
pseudoaccuracy measures introduced in the method
used by DeLong et al is that they can be calculated for
any summary statistic, whether estimated parametri-
cally or nonparametrically.)

In Table 4, we illustrate the calculation of the 15
AUC pseudovalues corresponding to the 15 original ob-
servations for the first diagnostic test. One begins with
the AUC estimate of 0.76. Thus, if we work with three
decimal places, the contribution of the first observation
to this AUC of 0.759 can be calculated as 15 - 0.759 -
14 - 0.833 = —0.277, or —0.28 when rounded back to
two decimal places. The pseudovalues for observations
2-15 can be calculated in a similar way with Equation
(4), yielding the last column of Table 4. One can now
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TABLE 4: Jackknife Pseudovalues and AUC

Patient With Jackknife

No. Disease? Rating AUC - Pseudovalues

1 Yes 1 0.833 -0.28

2 No 2 0.792 0.31

3 Yes 5 0.711 1.43

4 No 1 0.750 0.89

5 No 1 0.750 0.89

6 Yes 1 0.833 -0.28

7 Yes 2 0.733 1.12

8 No 1 0.750 0.89

9 No 2 0.792 0.31
10 Yes 2 0.733 1.12
11 No 1 0.750 0.89
12 No 1 0.750 0.89
13 Yes 5 0.711 1.43
14 No 1 0.750 0.89
15 No 1 0.750 0.89

Note.—Data were obtained with the first of two field strengths.
Average = AUC = 0.76; variance = 0.2752; variance of AUC =~
0.2752/15 = 0.0183; SE of AUC = ¥0.0183 = 0.14.

*AUC with i/ omitted.

think of these 15 pseudovalues as the statistical equiva-
lent of the 15 original (truth, rating) observations be-
cause (@) their mean (0.76) is the same as the AUC of
the 15 original observations and (b) as we will see later,
if one calculates the SE of this 0.76, by using the famil-
iar formula used to calculate the SE of a mean of 15 in-
dependent observations, it gives virtually the same an-
swer as if one calculates the SE with the more conven-
tional formulas such as those of Bamber {7], Hanley and
McNeil [8], or DeLong et al [9].

One can see that the pseudovalues rank cases in
terms of diagnostic difficulty or in terms of their contri-
bution to the level of the AUC. For example, patient 3
has a pseudovalue of 1.43, above the average of 0.76.
Because the image from this case—in the diseased
group—was rated 5 (definitely abnormal), it makes
sense that it be considered an “casiér-than—avcrage”

" case. In contrast, patient 1, with a below-average

pseudovalue of —0.28, was the most difficult case (dis-
eased, but rated as 1 [definitely normal]). Patient 2 was
a nondiseased subject whose image was rated 2 (prob-
ably normal); thus, the far below average pseudovalue
(0.31) seems rather harsh, until one considers that most
of the images from nondiseased subjects were rated 1
(definitely normal). Unfortunately, the small number of
cases and the presence of many ties in this illustrative
example make the pseudovalue scale rather coarse.

[ B o o B
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TABLE 5: Comparison of Two Diagnostic Tests: Calculation
of Varlances and Covariances of Two AUCs from the
Variances and Covariances of the Jackknife AUC
Pseudovalues

Jackknife Pseudovalues

Patient
No. Field Strength 1 Field Strength 2
1 -0.28 -0.21
2 0.30 0.85
3 1.43 1.35
4 0.89 0.85
5 0.89 0.85
6 -0.28 -0.21
7 o112 1.35
8 \ 0.89 0.85
9 0.30 0.42
10 1.12 1.19
11 0.89 0.85
12 0.89 0.85
13 1.43 1.35
14 0.89 0.85
15 0.89 0.85
Average 0.76 0.81
Variance 0.2752 0.2325
Covariance 0.2406*
Var(AUC) 0.2752/15 = 0.0183  0.2325/15 = 0.0155

Covar(AUC,, AUC,) 0.2406/15 = 0.0160

*Covariance was calculated as follows: correlation x SD, x SD,,
where SD = standard deviation, or covariance = (15/14) x covari-
ance calculated by using direct spreadsheet function.

Variance of the AUC Estimate

The variance of the AUC follows immediately from
the representation of the AUC as the mean of m + n
“independent” pseudovalues, namely,

Var[AUC] = Variance of mean of all m +n pAUCs
_ Variance of all pAUCs
m + n: number of pAUCs’

®

Thus, as is shown in Table 4, the variance associated
with the AUC of 0.76 is 0.2752/15 = 0.0183; to two
decimal places, this yields an SE of 0.14 (the method of
DelLong et al yields an SE of 0.13).

Comparison of Two Correlated AUCs

Similarly, if one has two AUC estimates calculated
from the same subjects, one can compute the
pseudovalues for each patient with each test. One can
then use the same techniques to calculate the covari-
ance between the two AUCs; one simply treats the

NONPARAMETRIC ESTIMATES OF AREAS UNDER ROC CURVES

samples of pseudovalues asm + n correlated pairs of
observations and uses the equation for the covariance
of two averages, namely,

Covar(pAUC,,pAUC,)

Covar{AUC,,AUC,] = —

®

That is, one simply replaces the “squares” implicit in
Equation (5) with products. This is illustrated in Table
5; the covariances are simply the average of the prod-
ucts of the deviations of each pair of pseudovalues from

. their own test-specific averages. Again, one can see that

the covariance of AUC, and AUC,, calculated with this
method, is very close to that calculated with the
method of DeLong et al. As before, the SE of the differ-
ence between the two AUCs can be calculated as the
square root of the variance of their difference, calcu-
lated with Equation (2).

LINK BETWEEN PLACEMENT VALUES AND AUC
PSEUDOVALUES

One of the difficulties for newcomers to pseudo-
values is the seemingly unnatural scale on which they
are distributed. The center (mean) of the AUC pseudo-
values has 2 meaning—it is the AUC itself—but the
range of variation is less intuitive. This is in contrast to
the natural (0, 1) scale on which the placements are
measured. That there is a direct one-to-one relationship
between pseudovalues and placements can be seen
from the following algebra.

Let X, X,,..., X_denote test results for » nondis-
eased subjectsand Y, Y,,,..., Y _denote results for m
diseased subjects. If a larger value indicates a higher
probability of a “signal,” then for each (X, Y) pair an
indicator function I(X,, Yp, orl] 4 for short, is defined as
follows:

lﬁg>&
IX, Yj) = 1/2ifY,=X,
Oiij<X,.

The average
P

of these I's over all nm comparisons is the nonparamet-
ric AUC.
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The jackknife AUC pseudovalue (pAUC) for X, is de-
fined as pAUC, = (m + m)AUC - (m + n - 1)AUC . Substi-
tuting for the two AUC statistics gives

1 n m
pAUC, =(m+n -ﬂ—;g;l,,j
-(m+n-1 —vo— 1)22 X

kel J

Then, after rearranging the second term we get

pAUC, = m";" iil,,,
k
el $30, 5

m+n m+n-1 LR
AUC, = - I,;
P g (mn m(n—l))gg b

m+n—1

+— > I,

m(n-— 1)2 ¥

Then, noting that
1 m

and after some simplification of the leading term, we
get

pAUG,; = —y, - —— AUC.
n_

Similarly, the jackknife pseudovalue for the jth Yin the
diseased group is as follows:

m+n-1 n
AUC, = Vv, -
pabl,=— 1 '/

AUC.

m-1

This link illustrates the difference in the scales and
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the reasons for the virtual equivalence of the two differ-
ent forms of the variance of the AUC statistic.
In the simplest case wherem =n = N/2,

pAUC:z—JLEV-—N—AUC
N-2 N-2

for each of the m + n observations.

The AUC pseudovalues fluctuate around the AUC
with approximately twice the amplitude of the place-
ments. This link also explains the difference in the form
of the DeLong et al and jackknife variances of the AUC.
The Delong et al variance is a sum of two terms, SYm
and S¥/n, where S? and S} are the variance of the place-
ments (V’s) for the Y and X samples. In contrast, the
jackknife variance involves a single term S?/(m + n),
where §? is the variance of all m + n AUC pseudoval-
ues. Because $? is approximately four times the size of §
and S, then

ST _4Sp _ 4% _ S | Sk
N N N/2 NJ2
_S LSk

m n

Var{AUC] =

The method used by DeLong et al has the advantage
of directly showing the dependence of the SE on each
of the two sample sizes m and n, whereas in the jack-
knife method, one simply sees the total sample size (m
+ n) in the denominator. If one of the two sample sizes
were small, however, this would be reflectedina larger
amplitude for the m + n pseudovalues, since the obser-
vations from the smaller sample have a larger influence
on the AUC.

PERFORMANCE OF TWO APP‘hOACHES IN
LARGER DATA SETS: A SIMULATION STUDY

In the worked example, the DeLong and jackknife
formulas for the variance of the AUC produced slightly
different answers. One may wonder whether this is a
random phenomenon peculiar to this data set or
whether the pattern would persist for other and for
larger data sets. Thus, we conducted 2 Monte Carlo
simulation to assess the performance of each method in
the prediction of the sampling variability of the AUC es-
timates. As is shown in the four leftmost columns of
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NONPARAMETRIC ESTIMATES OF AREAS UNDER ROC CURVES

TABLE 6:Comparison between Delong and Jackknife Methods In Estimating the SE
of Nonparametric AUCs: Average SE Over 1,000 Data Sets Generated from Various
Configurations of the Bivariate Binormal Model (m = n = 50)

AUC SE of the AUC or Difference in AUC
Degree of
Correlation 1 2 Ditference Delong Jackknife Empirical
High 0.61 cee 0.0566 0.0569 0.0581
s 0.75 cee 0.0488 0.0490 0.0487
ce cee 0.14 0.0387 0.0383 0.0378
Moderate 0.60 e s 0.0568 0.0571 0.0583
cee 0.72 cee 0.0508 0.0511 0.0501
s s 0.12 0.0507 0.0507 0.0502
Low 0.55 cee cen 0.0578 0.0581 0.0586
cee 0.63 ce 0.0557 0.0560 0.0541
) ‘\ ce cee 0.08 0.0725 0.0728 0.0721
High 0.75 s s 0.0487 0.0490 0.0502
cre 0.90 cee 0.0307 0.0308 0.0307
s ce 0.15 0.0349 0.0348 0.0351
Moderate 0.72 e cee 0.0508 0.0511 0.0525
cee 0.86 .o 0.0357 0.0359 0.0353
cee cee 0.14 0.0439 0.0439 0.0443
Low 0.63 cee ce 0.0557 0.0559 0.0568
cee 0.74 e 0.0496 0.0498 0.0481
e 0.1 0.0676 0.0678 0.0678
Table 6, the data concerning the presence of a signal
DISCUSSION

were generated by a bivariate binormal model with dif-
ferent patterns of location parameters and various cor-
relations (high, moderate, low). We generated 1,000
data sets with sample sizes of m = n = 50 for each con-
figuration studied.

In each data set, we calculated the SE of the two ac-
curacy indexes AUC, and AUC, and the SE of the differ-
ence in accuracies (AAUC) by using both the DeLong
and the jackknife method. The average of the 1,000 cal-
culated SEs was compared with the standard deviation
of the 1,000 estimates of each accuracy index.

The results are given in the three rightmost columns
of Table 6. The jackknife and DeLong methods yielded
very similar estimates of the SEs of accuracy indexes
AUC,, AUC,, and AUC, - AUC,, confirming the pattern
one would expect on the basis of the link between the
two. We suspect the minor differences stem from the
fact that m + n — 1 degrees of freedom are used in the
jackknife method and m — 1 and 7 — 1 are used in the
DeLong method. The ratio of average estimates of the
SEs to the corresponding empirical SE ranged from 0.97
to 1.05 over the various configurations studied. When
sample sizes of m = n = 100 were used, the ratio varied
from 1.00 to 1.05.

For researchers who wish to calculate the SE associ-
ated with a nonparametric AUC or the difference be-
tween two such AUCs, the choices seem bewildering.
The purpose of this review was to make sense of the
two main approaches and show users an approach to
calculation that is readily extendable to more than one
AUC.

We have no strong preference between the method
used by DeLong et al, which is based on placements,
and the AUC pseudovalue approach, which is based on
jackknifing. The structure of the former emphasizes the
need for adequate samples from each of the two states
to be distinguished (ie, m and n), whereas the pseudo-
value method appears to emphasize the total sample
size (m + n). In the end, however, both m and n do in-
fluence the SE. One feature that makes the approach
used by DeLong et al more intuitive is that each place-
ment is measured on the (0,1) scale, just like the AUC
itself. Moreover, one can relate the “component vari-
ances” directly to the shape of the ROC curve. Al-
though the individual jackknife pseudovalues also aver-
age out to the AUC, they vary over a wider range, from
below O to above 1, and so are less “natural.”
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From a computational viewpoint, there is little rea-
son to choose one over the other. While we have de-
scribed the DeLong method first, and then showed that
the jackknife pseudovalues could be obtained from the
placements with Equations (7) and (8), one could just
as easily have presented them in reverse order and cal-
culated the placements from the pseudovalues.

Given the twinlike nature of the two methods,
which approach should one adopt? We suggest that the
jackknife approach has greater payoff in the longer run.
The reason has to do with extensibly: The DeLong
method deals only with AUCs; the jackknife method
can deal with any ROC index (AUC, TPF at a given FPF,
TPF averaged over a range of FPFs, etc), whether esti-
mated parametrically or nonparametrically {14]. In-
deed, the use of pseudovalues has already been ex-
tended to the case of multiple readers by Dorfman et al
[13], and in another work [15] we propose that it can
be used to advantage for dealing with multiple signals.

Finally, because we see a future for jackknifing, we
want to comment on terminology. As with many statis-
tical terms (such as “standard” deviation), the term
pseudovalue is not entirely descriptive. One must em-
phasize therefore that “pseudo” values are not “false”
values. If one were to be classic, the term “quasi” val-
ues would convey more of the meaning, namely, that
they are “equivalent” values that can be substituted for
the original values, and that from their distribution one
is able to use conventional estimators for the uncer-
tainty of a mean to calculate the reliability of the sum-
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mary statistic in question. In the simplest case, the
pseudovalues for the best understood of all summary
statistics—the mean—are none other than the original
observations themselves.
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